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1. INTRODUCTION AND STATEMENT OF RESULTS

We study mean convergence of Hermite and Hermite–Fejér interpolatory
polynomials of higher order for Freud type weight functions on the real line.
More precisely, let X :={xkn} … R,

−. < xnn < xn−1, n < · · · < x2n < x1n <., n=1, 2, ...,

be a set of pairwise different nodes. Then for any real-valued function f on
R and an integer m \ 1, see ([25]), the Hermite–Fejér interpolation poly-
nomial of higher order Hnm(f, X) of degree [ nm−1 with respect to X is
defined by

˛Hnm(f, X, xkn)=f(xkn), 1 [ k [ n,

H (t)
nm(f, X, xkn)=0, 1 [ t [ m−1, 1 [ k [ n.

(1.1)



We note that by definition, Hn1 are the Lagrange, Hn2 the Hermite–Fejér
and Hn4 the Krylov–Stayermann interpolatory polynomials [7, 22, 23]. By
(1.1), we may write for x ¥ R,

Hnm(f, X, x)= C
n

k=1
f(xkn) hknm(X, x), n=1, 2, ... .

The polynomials

hk(X, x) :=hknm(X, x)=lm
kn(X, x) C

m−1

i=0
eiknm(x−xkn) i, 1 [ k [ n

are unique, of degree exactly nm−1 and satisfy the relations

h (t)
k (X, xln)=d0t dlk, 1 [ k, l [ n, 0 [ t [ m−1, (1.2)

where for nonnegative integers u and v

duv :=˛1, u=v
0, u ] v.

Here, lkn(X, x) are the well known fundamental Lagrange polynomials of
degree n−1 given by

lkn(X, x) :=
wn(x)

w −n(xkn)(x−xkn)
, wn(x) :=D

n

k=1
(x−xkn).

If f ¥ C (m−1)(R), then the Hermite interpolation polynomial of higher order
Ĥnm(f, X, x) of degree [ nm−1 with respect to X is defined by

Ĥ (t)
nm(f, X, xkn) :=f(t)(xkn), 1 [ k [ n, 0 [ t [ m−1.

We may write for x ¥ R,

Ĥnm(f, X, x)= C
m−1

t=0
C
n

k=1
f (t)(xkn) htk(X, x), m=1, 2, ...,

where

htk(X, x) :=htknm(X, x)

= lm
kn(X, x)

(x−xkn) t

t!
C

m−1−t

i=0
etiknm(x−xkn) i, 0 [ t [ m−1
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is the unique polynomial of degree nm−1 satisfying

h (i)
tk (X, xjn)=dti dkj, 0 [ i, t [ m−1, 1 [ j, k [ n. (1.3)

The coefficients eik :=eiknm and etik :=etiknm may be obtained from the
properties of hk and htk, (1.2) and (1.3), see e.g. (2.6). It follows that we
may write for any polynomial P of degree [ nm−1, and x ¥ R

P(x)=Ĥnm(P, X, x)=Hnm(P, X, x)+ C
m−1

t=1
C
n

k=1
P (t)(xkn) htk(X, x). (1.4)

In this paper, we are interested in investigating Lp(0 < p <.) conver-
gence of Hermite–Fejér and Hermite interpolation of higher order for an
interpolatory matrix X whose lines are the zeros of a sequence of orthogo-
nal polynomials with respect to a class of Freud weights on the real line. As
special cases of our main results, we are able to recover known results on
weighted Lagrange, Hermite and Hermite–Fejér interpolation for even
Freud weights on the real line. In particular, we are also able to derive new
results for Krylov–Stayermann interpolation and higher order processes for
Freud weights on the real line for arbitrary fixed values of m. We thus
believe that our main theorems provide a unified method by which all of
the above results may be obtained.

More precisely, we are concerned with Freud weights w of the form
w=exp(−Q) where:

• Q: RQ R is even and continuous.
• Q (2) is continuous in (0,.).
• QŒ \ 0 in (0,.).
• There are constants A and B with 1 < A [ B so that

A [
d
dx

(xQŒ(x))/QŒ(x) [ B, x ¥ (0,.).

This class is large enough to cover the well known example

wb(x) :=exp(−|x|b), x ¥ R, b > 1

of which the Hermite weight w2 is a special case.
For a given Freud weight w, we denote by

pn(w2, x)=cn(w2) xn+·· · , cn(w2) > 0, n \ 0
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the unique orthonormal polynomials satisfying

F
R

pn(w2, x) pm(w2, x) w2(x) dx=dmn, m, n=0, 1, 2, ...

and denote by

xn, n(w2) < xn−1, n(w2) < · · · < x2, n(w2) < x1, n(w2)

their n real simple zeros. We henceforth set X :={xkn(w2)}n
k=1={xkn}

n
k=1.

The subject of general orthogonal polynomials and weighted approxi-
mation on the real line and on finite intervals of the real line of positive
length, is a rich and well established topic of research and we refer the
reader to [3, 8, 15 17, 18] and the many references cited therein for a
comprehensive account of this vast area and its applications.

The results in this paper are motivated, in part, by the following papers
dealing with the theory of Lagrange, Hermite and Hermite–Fejér inter-
polation for weights on the real line and on finite intervals. In [11, 14, 16,
20] above authors studied weighted uniform and mean convergence of
Lagrange interpolation for Freud weights on the real line while in [4, 10,
13, 20], mean convergence of Hermite–Fejér and Hermite interpolation
processes for Freud weights on the real line were investigated. In [19, 23,
24, 26, 27], Sakai, Vértesi and Xu studied weighted uniform and mean
convergence of Hermite and Hermite–Fejér interpolations of higher order
at the zeros of Jacobi polynomials. Earlier work on Krylov–Stayermann
interpolation for Jacobi polynomials can be found in [7, 22] and an
interesting survey on this topic and related subjects may be found in [25].
Finally in [6], Kasuga and Sakai have recently investigated, in particular,
convergence of Hermite–Fejér interpolation of higher order for the Freud
weight of the form w2(x)=exp(−xm), m=2, 4, ... .

Before stating our main results, we find it convenient to introduce some
needed notation. First, we will henceforth suppress the dependence of the
matrix X on the sequences of functions defined above. For example we will
often write Hmn(f, X, x)=Hmn[f](x) and adopt similar conventions for
other sequences of functions. For any two sequences (bn) and (cn) of
nonzero real numbers, we shall write

bn M cn,

if there exists a constant C > 0, independent of n such that

bn [ Ccn for n large enough
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and we shall write

bn ’ cn,

if bn M cn and cn M bn. Similar notation will be used for functions and
sequences of functions. Given m \ 1 and 0 < p <., we will always set for
every natural number n

(log n)g
m, p :=˛ log n, mp ] 4

(log n)1+1/p, mp=4.

The symbol C will always denote an absolute positive constant which may
take on different values at different times and Pn will denote the class of
polynomials of degree at most n \ 1.

Finally, let au(w2) :=au, for u > 0, be the u-th Mhaskar–Rakhmanov–
Saff number, which is the unique positive root of the equation

u=
2
p
F

1

0

autQŒ(aut)

`1−t2
dt, u > 0.

Throughout, w will denote a Freud weight as defined above and au will
denote the Mhaskar–Rakhmanov–Saff number for the weight w2. Follow-
ing are our main results.

Theorem 1.1a. Let 0 < p <., 1 [ m < 4 and let D ¥ R, a > 0 and
â :=min{1, a}. Then the following hold:

(A) Suppose that for 0 < p [ 4/m, we have uniformly for n \ C

a−(a+D)+1/p
n nm/6−1/3 M

1
(log n)g

m, p

(1.5)

and

â+D >
1
p
. (1.6)

Then

lim
n Q.

||(f(x)−Hnm[f](x)) wm(x)(1+|x|)−D||Lp(R)=0 (1.7)

for every continuous function f: RQ R satisfying

lim
|x| Q.

|f(x)| wm(x)(1+|x|)a=0. (1.8)
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Moreover,

lim
n Q.

||(f(x)−Ĥnm[f](x)) wm(x)(1+|x|)−D||Lp(R)=0 (1.9)

for every f ¥ C (m−1)(R) satisfying (1.8) and

sup
x ¥ R

|f (t)(x) wm(x)(1+|x|)a| <., t=1, 2, ..., m−1. (1.10)

(B) Suppose that for p > 4/m, we have uniformly for n \ C

a−(a+D)+1/p
n n (m−1)/3−2/(3p) M 1 1

log n
2 (1.11)

and

a−(â+D)+1/p
n nm/6−2/(3p) M 1 1

log n
2 . (1.12)

Then (1.7) holds for continuous functions satisfying (1.8) and (1.9) holds for
continuous functions satisfying (1.8) and (1.10).

Theorem 1.1b. Let 0 < p <., m \ 4 and let D ¥ R, a > 0 and â :=
min{1, a}. In addition, assume that uniformly for n \ C

a−a
n nm/6−1 M

1
(log n)1/p . (1.13)

Then the following hold:

(A) Suppose that for 0 < p [ 4/m, (1.5) and (1.6) hold. Then (1.7)
holds for continuous functions satisfying (1.8) and (1.9) holds for continuous
functions satisfying (1.8) and (1.10).

(B) Suppose that for 4/m < p [ 1, there exists d1 > 0 and d2 > 0 such
that uniformly for n \ C

a−(a+D)+1/p
n n (m−1)/3−2/3 M (n−d1) (1.14)

and

a−(â+D)+1/p
n nm/6−2/3 M (n−d2). (1.15)

Then (1.7) holds for continuous functions satisfying (1.8) and (1.9) holds for
continuous functions satisfying (1.8) and (1.10).
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(C) Suppose that for p > 1, (1.11) and (1.12) hold. Then (1.7) holds
for continuous functions satisfying (1.8) and (1.9) holds for functions
satisfying (1.8) and (1.10).

Remark.

(a) It is instructive to briefly discuss the assumptions (1.5)–(1.6),
(1.11)–(1.12) and (1.13)–(1.15). Firstly, it is well known, see ([18], Theorem
3.2.1), that for every polynomial Pn ¥Pn, n \ 1 and for a given Freud
weight w

||Pnw||L.[−an, an]=||Pnw||L.(R).

Thus in particular for weighted approximation, it has become natural to
impose minimal growth assumptions on the sequence an in order to estab-
lish convergence of interpolation operators in suitable weighted spaces on
the real line, see [1, 2, 4, 11, 16, 20] and the references cited therein.

(b) For a Freud weights w, it is well known, see [8], that uniformly
for u \ C,

u1/B M au M u1/A

so that in particular, the assumption (1.13) only becomes significant for
m > 6. Indeed, it is easily seen that (1.13) is readily satisfied for 1 [ m [ 6.
If (1.6) holds, then a−a−D+1/p

n decreases to 0 for large n. If p > 4/m, then it
is easy to see that the exponents of n in (1.12) are positive. In particular,
(1.12) implies (1.6). Similarly, if m \ 4, (1.15) implies (1.6).

(c) In particular, for the weight w=wb, it is well known, see [18,
Chap. 4], that an=Cn1/b and thus we obtain the following result.

Corollary 1.2a. Let w=wb, b > 1, 0 < p <. and 1 [ m < 4. In
addition, let D ¥ R, a > 0 and â :=min{1, a}. Then the following hold:

(A) Suppose that for 0 < p [ 4/m,

−a
b

+
m
6

<
D

b
−

1
pb

+
1
3
; â+D >

1
p
.

Then (1.7) holds for continuous functions satisfying (1.8) and (1.9) holds for
continuous functions satisfying (1.8) and (1.10).

(B) Suppose moreover that for p > 4/m we have

−a
b

+
m
6

<
D

b
−

1
pb

+
2
3p

−
m
6
+

1
3
;

− â
b

+
m
6

<
D

b
−

1
pb

+
2
3p

.
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Then (1.7) holds for functions satisfying (1.8) and (1.9) holds for functions
satisfying (1.8) and (1.10).

Corollary 1.2b. Assume the hypotheses of Corollary 1.2a except we
assume that m \ 4. Then the following hold:
Suppose that for 0 < p [ 4/m, we have

−a
b

+
m
6

< min 31,
D

b
−

1
pb

+
1
3
4 ; â+D >

1
p
,

for 4/m < p [ 1, we have

−a
b

+
m
6

< min 31,
D

b
−

1
pb

+
2
3
−

m
6
+

1
3
4 ; − â

b
+

m
6

<
D

b
−

1
pb

+
2
3

and for p > 1 we have

−a
b

+
m
6

< min 31,
D

b
−

1
pb

+
2
3p

−
m
6
+

1
3
4 ; − â

b
+

m
6

<
D

b
−

1
pb

+
2
3p

.

Then (1.7) holds for continuous functions satisfying (1.8) and (1.9) holds for
continuous functions satisfying (1.8) and (1.10).

We observe that Theorems 1.1a and 1.1b allow us to recover as special
cases, results on weighted Lagrange, Hermite, Hermite–Fejér and Krylov–
Stayermann interpolation for Freud weights. For Lagrange, Hermite and
Hermite–Fejér interpolation, special cases of our results for our class of
weights have already appeared in [4, Theorem 1.1; 11, Theorem 1.3; 14,
Theorem 1.1].

1.1. Lagrange Interpolation: The Case m=1

Corollary 1.3. Let 0 < p <., D ¥ R, a > 0 and â :=min{1, a}. We
assume that for 0 < p [ 4,

â+D >
1
p

and for p > 4,

a−(â+D)+1/p
n n1/6(1−4/p) M 1 1

log n
2 .

Then we have

lim
n Q.

||(f(x)−Ln[f](x)) w(x)(1+|x|)−D||Lp(R)=0
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for every continuous function f: RQ R satisfying

lim
|x| Q.

|f(x)| w(x)(1+|x|)a=0.

1.2. Hermite and Hermite–Fejér Interpolation: The Case m=2

Corollary 1.4. Let 0 < p <., D ¥ R, a > 0 and â :=min{1, a}. We
assume that for 0 < p [ 2,

â+D >
1
p

and for p > 2,

a−(â+D)+1/p
n n1/3(1−2/p) M 1 1

log n
2 .

Then we have

lim
n Q.

||(f(x)−H2n[f](x)) w2(x)(1+|x|)−D||Lp(R)=0

for every continuous function f: RQ R satisfying

lim
|x| Q.

|f(x)| w2(x)(1+|x|)a=0. (1.16)

Moreover,

lim
n Q.

||(f(x)−Ĥ2n[f](x)) w2(x)(1+|x|)−D||Lp(R)=0

for every f ¥ C (1)(R) satisfying (1.16) and

sup
x ¥ R

|fŒ(x)| w2(x)(1+|x|)a <..

1.3. Krylov–Stayermann Interpolation: The Case m=4

Corollary 1.5. Let 0 < p <., D ¥ R, a > 0 and â :=min{1, a}. We
assume that for 0 < p [ 1,

a−(a+D)+1/p
n n1/3 M

1
(log n)g

4, p

HERMITE AND HERMITE–FEJÉR INTERPOLATION 29



and

â+D >
1
p
.

Moreover for p > 1 assume

a−(a+D)+1/p
n n1−2/(3p) M 1 1

log n
2

and

a−(â+D)+1/p
n n2/3−2/(3p) M 1 1

log n
2 .

Then we have

lim
n Q.

||(f(x)−K4n[f](x)) w4(x)(1+|x|)−D||Lp(R)=0

for every continuous function f: RQ R satisfying

lim
|x| Q.

|f(x)| w4(x)(1+|x|)a=0. (1.17)

Moreover,

lim
n Q.

||(f(x)−K̂4n[f](x)) w4(x)(1+|x|)−D||Lp(R)=0

for every f ¥ C (3)(R) satisfying (1.17) and

sup
x ¥ R

|f (t)(x)| w4(x)(1+|x|)a <., t=1, 2, 3.

This paper is organized as follows. In Section 2, we state and prove a
quadrature theorem which is of independent interest and in Section 3, we
prove our main results. Section 4 contains an appendix with a technical
lemma which we use throughout.

2. QUADRATURE AND DERIVATIVE ESTIMATES

In this section, we prove a quadrature estimate which is of independent
interest. Throughout for convenience, we set for n \ 1

x0, n :=x1, n+Cn−2/3an, xn+1, n :=xn, n −Cn−2/3an.

30 DAMELIN, JUNG, AND KWON



Following is our main result in this section:

Theorem 2.1. For b ¥ (0, 1/2), n ¥ R, r=0, 1, 2, ..., m−1 and x ¥ R, let

Sr(x) :=1 n
an

2 r C
|xkn| \ ban

(|lkn(x)| w−1(xkn))m |x−xkn | r (1+|xkn |)−n.

Then for some positive constants C1, C2 and C3 with x0, n < (1+C2n−2/3) an,
we have uniformly for n \ C,

wm(x) Sr (x) M a−n
n
˛

An(x), |x| [ ban/2

Bn(x), |x| \ 2an

Cn(x), ban/2 [ |x| [ an(1−C1n−2/3)

Dn(x), an(1−C1n−2/3) [ |x| [ an(1+C2n−2/3)

En(x), an(1+C2n−2/3) [ |x| [ 2an.

(2.1)

Here

An(x) :=nmax{m/6−1, 0} ˛ log n, m=6
1, m ] 6.

Bn(x) :=an |x|−(m−r) nmax{m/6−1, 0} ˛ log n, m=6
1, m ] 6.

Cn(x) :=(1− |x|/an)−r/2+nmax{m/6−1/3, 0} |a1/2
n pn(x) w(x)|m log n.

Dn(x) :=1 n
an

2 r | |x|−(1−C3n−2/3) an | r

+nmax{m/6−1/3, 0} |a1/2
n pn(x) w(x)|m log n.

En(x) :=nmax{m/6−1/3, 0} |a1/2
n pn(x) w(x)|m log n.

In order to prove Theorem 2.1, we need two auxiliary lemmas.
We begin with:

Lemma 2.2. Let n, r > 1. Then uniformly for 1 [ k [ n,

: p (r)
n (xkn)

p −n(xkn)
: M 1 n

an

2 r−1

. (2.2)

For the weight exp(−xm), m an even positive integer, Lemma 2.2 was
first proved in [5, Lemma 4] for all r \ 1. We emphasize that our method
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of proof differs from that used in [5] as there, heavy use was made of
differential equations satisfied by the orthogonal polynomials in question.

Proof. We write

pn(t)=lkn(t)(t−xkn) p −n(xkn) (2.3)

and introduce the reproducing kernel

Kn(x, t) := C
n−1

k=0
pk(x) pk(t), x, t ¥ R

and Cotes numbers

lk, n :=Kn(xk, n, xk, n)−1, k \ 1.

Then it is well known, see [3, Chap. 1], that for 1 [ k [ n

Kn(t, xk, n)=
lk, n(t)
lk, n

, t ¥ R

and for every polynomial Pn−1 of degree at most n−1

Pn−1(x)=F
R

Pn−1(t) Kn(t, xk, n) w2(t) dt.

Applying these well known identities gives

p (r)
n (xkn)=F

R
p (r)

n (t) Kn(t, xkn) w2(t) dt

=
1
lkn

F
R

p (r)
n (t) lkn(t) w2(t) dt

=
p −n(xkn)
lkn

F
R

(lkn(t)(t−xkn)) (r) lkn(t) w2(t) dt

=
p −n(xkn)
lkn

F
R

(l (r)
kn (t)(t−xkn) lkn(t)+rl(r−1)

kn (t) lkn(t)) w2(t) dt

=
rp −n(xkn)
lkn

F
R

l (r−1)
kn (t) lkn(t) w2(t) dt.
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Then by Hölder’s inequality and Markov’s inequality, see [9, Theorem 1,1]
we learn that

|p (r)
n (xkn)| M

|p −n(xkn)|
lkn
1F

R
(l (r−1)

kn (t) w(t))2 dt2
1/2 1F

R
(lkn(t) w(t))2 dt2

1/2

=
|p −n(xkn)|
lkn

||l (r−1)
kn (t) w(t)||L2(R) ||lkn(t) w(t)||L2(R)

M
|p −n(xkn)|
lkn
1 n
an

2 (r−1)

||lkn(t) w(t)||2L2(R).

It remains to observe that

1
lk, n

||lkn(t) w(t)||2L2(R)=F
R

Kn(t, xk, n) lk, n(t) w2(t) dt=lk, n(xk, n)=1.

This completes the proof of (2.2). L

Next we use Lemma 2.2 to prove:

Lemma 2.2. Let r \ 0 and n, m \ 1. Then uniformly for 1 [ k [ n,
0 [ t [ m−1 and 0 [ s [ m−1

|[lm
kn]

(r) (xkn)| M 1
n
an

2 r (2.4)

and

|esk | M 1
n
an

2 s, |etsk | M 1
n
an

2 s. (2.5)

Proof. We prove (2.4) by induction on m. From (2.3) we easily obtain
by using Leibnitz’s rule for differentiation

l (r)
kn (xkn)=

p (r+1)
n (xkn)

(r+1) p −n(xkn)

HERMITE AND HERMITE–FEJÉR INTERPOLATION 33



and so (2.4) holds for m=1 by Lemma 2.2. Now assume that (2.4) holds
for m=1, 2, ..., t−1 for t \ 2. Then using Leibnitz’s rule for differentiation
we obtain

|[l t
kn]

(r) (xkn)| M C
r

i=0

R r
i
S |l (i)

kn (xkn)| |[l
t−1
kn ] (r− i) (xkn)|

M C
r

i=0

R r
i
S 1 n

an

2 i 1 n
an

2 (r− i)

M 1 n
an

2 r.

This completes the proof of (2.4). To prove (2.5), we proceed by induction
on s. First for s=0, (2.5) is trivial since e0k=1 and et0k=1. For s \ 1, we
have by (1.2)

0=h(s)
k (xkn)=C

s

i=0
eik
R s

i
S i![lm

kn]
(s− i) (xkn)

so that

esk=−
1
s!

C
s−1

i=0
eik
R s

i
S i![lm

kn]
(s− i) (xkn). (2.6)

Thus if we assume that (2.5) holds for s=0, 1, ..., t−1 for t \ 1, then by
(2.6) and (2.4), we have

|etk | M C
t−1

i=0
|eik | |[l

m
kn]

(t− i) (xkn)| M C
t−1

i=0

1 n
an

2 i 1 n
an

2 t− i

M 1 n
an

2 t.

By the same process for htk, we have |etsk | M ( n
an
) s. This completes the proof

of Lemma 2.3. L

We now present the proof of Theorem 2.1:

Proof. For |xkn | \ ban, |xkn | ’ an by (4.2) so we may assume without
loss of generality that n=0. We consider various cases:

Case 1. |x| [ ban/2: First we observe that uniformly for |xkn | \ ban

|x−xkn | ’ |xkn | ’ an.

Moreover, for this range of x, (4.3) implies that

|a1/2
n pn(x) w(x)| M 1.
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Thus (4.7) yields

wm(x) Sr (x)

M 1 n
an

2 r

× C
|xkn| \ ban

1a3/2
n

n
max{n−2/3, 1− |xkn |/an}−1/4 |pn(x) w(x)|

|x−xkn |
2m |x−xkn | r

M 1an

n
2m−r

a r−m
n C

|xkn| \ ban

max{n−2/3, 1− |xkn |/an}−m/4. (2.7)

Now using (4.2) we see that

C
|xkn| \ ban

max{n−2/3, 1− |xkn |/an}−m/4

M
a
an

C
|xkn| \ ban

max{n−2/3, 1− |xkn |/an}−m/4+1/2 (xk−1, n −xk+1, n)

M
n
an

[Sr1+Sr2],

where

Sr1 := C
ban [ |xkn| [ (1−n −2/3) an

max{n−2/3, 1− |xkn |/an}−m/4+1/2 (xk−1, n −xk+1, n)

and

Sr2 := C
|xkn| [ (1−n −2/3) an

max{n−2/3, 1− |xkn |/an}−m/4+1/2 (xk−1, n −xk+1, n).

Then we have by (4.1)

Sr2 M n−2/3(−m/4+1/2) |x0n −(1−n−2/3) an | M annm/6−1

and since 1− |xkn |/an ’ 1− |t|/an for t ¥ [xk+1, n, xk−1, n] from (4.5), we have

Sr1 M C
ban [ |xkn| [ (1−n −2/3) an

(1− |xkn/an |)−m/4+1/2 F
xk−1, n

xk+1, n

dt

M F
(1−n −2/3) an

ban

(1− |t|/an)−m/4+1/2 dt.
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Thus, we have

C
|xkn| \ ban

max{n−2/3, 1− |xkn |/an}−m/4

M
n
an

5F (1−n −2/3) an

ban

(1−t/an)−m/4+1/2 dt+annm/6−16

M n1+max{m/6−1, 0} ˛ log n, m=6
1, m ] 6.

(2.8)

Substituting (2.8) into (2.7) proves Case 1.

Case 2. |x| \ 2an: Here |x−xkn | ’ |x| and for this range of x,

|a1/2
n pn(x) w(x)| M 1

by (4.3). Thus using (2.8) and proceeding as in Case 1 gives

wm(x) Sr(x)

M 1 n
an

2 r

× C
|xkn| \ ban

1a3/2
n

n
max{n−2/3, 1− |xkn |/an}−1/4 |pn(x) w(x)|

|x−xkn |
2m |x−xkn | r

M 1an

n
2m−r

|x|−(m−r) C
|xkn| \ ban

max{n−2/3, 1− |xkn |/an}−m/4

M an |x|−(m−r) nmax{m/6−1, 0} ˛ log n, m=6
1, m ] 6

as required.

Case 3. ban/2 [ |x| [ 2an: We choose l=l(x) such that x ¥ [xl+1, n, xln],
if possible, and split

Sr(x) :=Sr1(x)+Sr2(x),

where Sr1 sums over those k in Sr for which k ¥ [l−3, l+3] and Sr2 con-
tains the rest. Here, if |x| > x0n, we set Sr1=0. Then we have much as in
Cases 1 and 2
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wm(x) Sr2 (x)

M 1 n
an

2 r

×Sr2
1 a3/2

n

n
max{n−2/3, 1− |xkn |/an}−1/4 |pn(x) w(x)|

|x−xkn |
2m |x−xkn | r

M 1an

n
2m−r−1

|a1/2
n pn(x) w(x)|m Sr2

(xk−1, n −xk+1, n)
|x−xkn |m−r

×max{1− |xkn |/an, n−2/3}−m/4+1/2. (2.9)

Then (2.9) becomes

wm(x) Sr2 (x)

M 1an

n
2m−r−1

|a1/2
n pn(x) w(x)|m nmax{m/6−1/3, 0} Sr2

(xk−1, n −xk+1, n)
|x−xkn |m−r

M 1an

n
2m−r−1

|a1/2
n pn(x) w(x)|m nmax{m/6−1/3, 0}

×5 Fxl+3, n

ban

+F
x0, n

xl−3, n

dt
|x−t|m−r
6 .

Here, for r < m−1,

F
xl+3, n

ban

+F
x0, n

xl−3, n

dt
|x−t|m−r

M F
xl+3, n

ban

dt
(x−t)m−r+F

xo, n

xl−3, n

dt
(t−x)m−r

M (xl+1, n −xl+3, n)−(m−r−1)+(xl−3, n −xl−1, n)−(m−r−1)

M 1an

n
max{1− |x|/an, n−2/3}−1/22−(m−r−1)

M 1 n
an

2m−r−1

(n−2/3+|1− |x|/an |) (m−r−1)/2

M 1 n
an

2m−r−1

and for r=m−1

F
xl+3, n

ban

+F
x0, n

xl−3, n

dt
|x−t|m−r M log n.
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Therefore, for r=0, 1, 2, ..., m−1

F
xl+3, n

ban

+F
x0, n

xl−3, n

dt
|x−t|m−r M 1 n

an

2m−r−1

log n.

Thus we have shown that for this range of x,

wm(x) Sr2 (x) M nmax{m/6−1/3, 0} |a1/2
n pn(x) w(x)|m log n.

Case 3.1. ban/2 [ |x| [ (1−C1n−2/3) an: We have

wm(x) Sr1 (x)=1 n
an

2 r ((ll+3, n(x) w−1(xl+3, n) w(x))m |x−xl+3, n | r

+·· ·+(ll−3, n(x) w−1(xl−3, n) w(x))m |x−xl−3, n | r).

Thus by (4.8) we have

wm(x) Sr1 (x) M 1 n
an

2 r |xl−3, n −xl+3, n | r ’ (1− |x|/an)−r/2.

Case 3.2. (1−C1n−2/3) an [ |x| [ (1+C2n−2/3) an: By a similar argu-
ment to the above we see that there exists a constant C3 > 0 such that

wm(x) Sr1 (x) M 1 n
an

2 r | |x|−(1−C3n−2/3) an | r.

Case 3.3. (1+C2n−2/3) an [ |x| [ 2an: Finally for this range of x, we
observe that Sr1 (x)=0. Combining all our estimates completes the proof
of Theorem 2.1.

3. PROOF OF MAIN RESULTS

In this section we prove our main results, namely Theorems 1.1a and
1.1b. We find it convenient to split our functions to be approximated into
pieces that vanish inside or outside [−ban, ban] for some b > 0. For
simplicity, we shall write

Hn, m, i[f](x)=Hnmi[f](x) := C
n

k=1
eikl

m
kn(x)(x−xkn) i f(xkn)

so that

Hnm[f](x)= C
m−1

i=0
Hnmi[f](x).
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We break up the proof of Theorems 1.1a and 1.1b into several lemmas.
The first is given in:

Lemma 3.1. Let 1 < p <., D ¥ R, a > 0, â :=min{1, a} and e > 0. Let
b ¥ (0, 1/2) and assume further that {fn}

.

n=1 is a sequence of measurable
functions from R to R satisfying

fn(x)=0, |x| < ban

and

|fnwm| (x) [ e(1+|x|)−a, x ¥ R and n \ 1. (3.1)

Let m \ 1.

(a) Suppose for the given m, 1 < p [ 4/m. Then assume that (1.5) and
(1.6) hold.

(b) Suppose that for the given m, p > 4/m. Then assume that (1.11)
and (1.12) hold. Moreover, if m > 6, assume that (1.13) always holds.

Then for r=0, 1, ..., m−1, we have

lim sup
n Q.

||Hnmr[fn](x) wm(x)(1+|x|)−D||Lp(R) M e.

Proof. First we have by (2.5), (3.1) and the definition of Sr in
Theorem 2.1,

|Hnmr[fn](x) wm(x)(1+|x|)−D|

=:wm(x) C
n

k=1
erkl

m
kn(x)(x−xkn) r fn(xkn)(1+|x|)−D :

M ewm(x) 1 n
an

2 r C
|xkn| \ ban

|lkn(x) w−1(xkn)|m

×|x−xkn | r (1+|xkn |)−a (1+|x|)−D

=ewm(x) Sr (x)(1+|x|)−D. (3.2)

Thus to prove Lemma 3.1 it suffices to estimate (3.2). We find it convenient
to adopt the following notation. Set:

A1 :={x | |x| [ ban/2},

A2 :={x | |x| \ 2an},

A3 :={x | ban/2 [ |x| [ (1−C1n−2/3) an},

A4 :={x | (1−C1n−2/3) an [ |x| [ (1+C2n−2/3) an},

A5 :={x | (1+C2n−2/3) an [ |x| [ 2an}.
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First by (3.2) and (2.1)

y (n1)n :=||Hnmr[fn](x) wm(x)(1+|x|)−D||Lp(A1)

M ea−a
n nmax{m/6−1, 0} ||(1+|x|)−D||Lp(A1)

˛ log n, m=6,
1, m ] 6

M ea−a+max{−D+1/p, 0}
n nmax{m/6−1, 0} ˛ log n, m=6,

1, m ] 6.

×˛ (log n)1/p, Dp=1,
1, Dp ] 1

M e ˛
a−a

n (log n)1+1/p, (1) m [ 6, Dp \ 1,

a−(a+D)+1/p
n log n, (2) m [ 6, Dp < 1,

a−a
n nm/6−1(log n)1/p, (3) m > 6, Dp \ 1,

a−(a+D)+1/p
n nm/6−1, (4) m > 6, Dp < 1.

Case (a). Suppose 1 < p [ 4/m and (1.6) is satisfied. Then is suffices to
consider the possibilities m=1, 2, 3.

If Dp \ 1 then (1)=O(1), since a > 0.
If Dp < 1 then (1.6) implies a−(a+D)+1/p

n [ a−(â+D)+1/p
n , but here,

−(â+D)+1/p < 0. Hence (2)=O(1).

Case (b). If p > 4/m,

if m [ 6 and (1.12) is satisfied,
If Dp \ 1, then (1)=O(1), since a > 0;
if Dp < 1, then (1.12) S (2)=O(1), because

a−(a+D)+1/p
n log n [ a−(â+D)+1/p

n log n

[ a−(â+D)+1/p
n nm/6p(p−4/m) log n

=a−(â+D)+1/p
n nm/6−2/(3p) log n=O(1);

if m > 6 and (1.12), (1.13) are satisfied,
if Dp \ 1, then (1.13) S (3)=O(1);
if Dp < 1, then (1.12) S (4)=O(1), because

a−(a+D)+1/p
n nm/6−1 [ a−(â+D)+1/p

n nm/6−1

=a−(â+D)+1/p
n nm/6−2/(3p)n2/(3p)−1

=O 1 1
log n
2 n−1+2/(3p)=O(1).
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Therefore, we have

lim sup
n Q.

y (1)n M e.

Next,

y (2)n :=||Hnmr[fn](x) wm(x)(1+|x|)−D||Lp(A2)

M ea−a+1
n nmax{m/6−1, 0} ˛ log n, m=6,

1, m ] 6.

× || |x|−(m−r)(1+|x|)−D||Lp(A2)

M ea−(a+D)+1/p−(m−r−1)
n nmax{m/6−1, 0} ˛ log n, m=6,

1, m ] 6.

M ea−(a+D)+1/p
n nmax{m/6−1, 0} ˛ log n, m=6,

1, m ] 6.

Case (a). If 1 < p [ 4/m and (1.6) is satisfied.
Then m < 6 and (1.6) implies

a−(a+D)+1/p
n nmax{m/6−1, 0}=a−(a+D)+1/p

n [ a−(â+D)+1/p
n =O(1).

Case (b). If p > 4/m and (1.12) is satisfied,

if m [ 6,

a−(a+D)+1/p
n nmax{m/6−1, 0} ˛ log n, m=6,

1, m ] 6

[ a−(â+D)+1/p
n log n

[ a−(â+D)+1/p
n nm/6p(p−4/m) log n

[ a−(â+D)+1/p
n nm/6−2/(3p) log n=O(1);

if m > 6, (1.12) implies

a−(a+D)+1/p
n nmax{m/6−1, 0} ˛ log n, m=6,

1, m ] 6

[ a−(â+D)+1/p
n nm/6−1

[ a−(â+D)+1/p
n nm/6−2/(3p)n−1+2/(3p)

=O 1 1
log n
2 n−1+2/(3p)=O(1).

HERMITE AND HERMITE–FEJÉR INTERPOLATION 41



Therefore, we have

lim sup
n Q.

y (2)n M e.

Now we have

y (3)n :=||Hnmr[fn](x) wm(x)(1+|x|)−D||Lp(A3)

M ea−(D+a)
n
>11−

|x|
an

2−r/2>
Lp(A3)

+ea−(D+a)
n nmax{m/6−1/3, 0} log n ||(a1/2

n pnw)m||Lp(R)

M ea−(D+a)
n
>11−

|x|
an

2−r/2>
Lp(A3)

+ea−(D+a)
n nmax{m/6−1/3, 0} log n ||a1/2

n pnw||mLmp(R).

Observe that first

>11−
|x|
an

2−r/2>
Lp(A3)

’ a1/p
n
1F (1−C1n

−2/3)

b/2
(1−t)−rp/2 dt2

1/p

’ a1/p
n
˛1, rp < 2,

(log n)1/p, rp=2,

n−2/3(−r/2+1/p), rp > 2

M a1/p
n nmax{r/3−2/(3p), 0}(log n)1/p

and second by (4.6)

||a1/2
n pnw||mLmp(R) M a1/p

n
˛1, mp < 4,

(log n)m/4, mp=4,

nm/6−2/(3p), mp > 4

M a1/p
n nmax{m/6−2/(3p), 0} ˛ (log n)m/4, mp=4,

1, mp ] 4.

Thus if m \ 2, we have

y (3)n M ea−(D+a)+1/p
n (log n)1/p nmax{r/3−2/(3p), 0}

+ea−(D+a)+1/p
n nmax{(m−1)/3−2/(3p), m/6−1/3}(log n)g

m, p

=e(bn+cn),
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where

bn :=a−(D+a)+1/p
n (log n)1/p nmax{r/3−2/(3p), 0}

and

cn :=a−(D+a)+1/p
n nmax{(m−1)/3−2/(3p), m/6−1/3}(log n)g

m, p.

Moreover if m=1 we have

y (3)n M ea−(D+a)+1/p
n

+ea−(D+a)+1/p
n nmax{1/6−2/(3p), 0}(log n)g

1, p

=edn,

where

dn :=a−(D+a)+1/p
n +a−(D+a)+1/p

n nmax{1/6−2/(3p), 0}(log n)g
1, p.

First assume that m \ 2. Then for bn, we have

bn [ a−(D+a)+1/p
n (log n)1/p (1+n(m−1) 3−2/(3p)).

Case (a). If 1 < p [ 4/m and (1.5) are satisfied, then (m−1)/3−2/(3p)
[ m/6−1/3 and 2 [ m < 4, (1.5) implies

bn M a−(D+a)+1/p
n nm/6−1/3(log n)1/p

[ a−(D+a)+1/p
n nm/6−1/3(log n)g

m, p=O(1).

Case (b). If p > 4/m and (1.11), (1.12) are satisfied, then

bn [ a−(D+a)+1/p
n (log n)1/p (1+n(m−1)/3−2/(3p))

[ a−(D+â)+1/p
n nm/6p(p−4/m)(log n)1/p

+a−(D+a)+1/p
n n (m−1)/3−2/(3p)(log n)1/p

[ a−(D+â)+1/p
n nm/6−2/(3p) log n

+a−(D+a)+1/p
n n (m−1)/3−2/(3p) log n

=O(1).

For cn,

Case (a). If 1 < p [ 4/m and (1.5) are satisfied, then (m−1)/3−2/(3p)
[ m/6−1/3, (1.5) implies

cn=a−(D+a)+1/p
n nm/6−1/3(log n)g

m, p=O(1).
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Case (b). If p > 4/m and (1.11) are satisfied, then (m−1)/3−2/(3p) \
m/6−1/3, (1.11) implies

cn=a−(D+a)+1/p
n n (m−1)/3−2/(3p)(log n)g

m, p

=a−(D+a)+1/p
n n (m−1)/3−2/(3p) log n

=O(1).

Hence for m \ 2, we have

lim sup
n Q.

y (3)n M e.

If m=1,

Case (a). If 1 < p [ 4 and (1.6) is satisfied, then 1/6−2/(3p) [ 0 and
(1.6) implies

dn=a−(D+a)+1/p
n +a−(D+a)+1/p

n nmax{1/6−2/(3p), 0}(log n)g
1, p

M a−(D+a)+1/p
n (log n)g

1, p M a−(D+â)+1/p
n (log n)g

1, p=O(1).

Case (b). If p > 4 and (1.12) is satisfied, then 1/6−2/(3p) > 0 and
(1.12) implies

dn M a−(D+â)+1/p
n nmax{1/6−2/(3p), 0}(log n)g

1, p

=a−(D+â)+1/p
n n1/6−2/(3p) log n=O(1).

Therefore, we have for m=1,

lim sup
n Q.

y (3)n M e.

We consider two further cases. First using Case 3

y (4)n :=||Hnmr[fn](x) wm(x)(1+|x|)−D||Lp(A4)

M ea−(D+a)
n
1 n
an

2 r ||(|x|−(1−C3n−2/3) an) r||Lp(A4)

+e ˛a
−(D+a)+1/p
n nmax{(m−1)/3−2/(3p), m/6−1/3}(log n)g

m, p, m \ 2,
a−(D+a)+1/p

n nmax{1/6−2/(3p), 0}(log n)g
1, p, m=1.

Since

||(|x|−(1−C3n−2/3) an) r||Lp(A4)

=1F (1+C1n
−2/3) an

(1−C1n
−2/3) an

(|x|−(1−2C3n−2/3) an) rp dx2
1/p

M (n−2/3an) r+1/p
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it follows that we deduce

y (4)n M e ˛
a−(D+a)+1/p

n n r/3−2/(3p)

+a−(D+a)+1/p
n nmax{(m−1)/3−2/(3p), m/6−1/3}(log n)g

m, p, m \ 2,

a−(D+a)+1/p
n +a−(D+a)+1/p

n nmax{1/6−2/(3p), 0}(log n)g
1, p, m=1,

M e ˛bn+cn, m \ 2,
dn, m=1.

Hence, much as in Case 3,

lim sup
n Q.

y (4)n M e.

Finally, we see that for m \ 2, y (5)n M ecn and for m=1, y (5)n M edn, where

y (5)n :=||Hnmr[fn] wm(x)(1+|x|)−D||Lp(A5).

Hence, we also have

lim sup
n Q.

y (5)n M e.

Therefore, we have for r=0, 1, ..., m−1,

lim sup
n Q.

||Hnmr[fn](x) wm(x)(1+|x|)−D||Lp(R) M e

and this last statement proves the lemma. L

Having dealt with functions that vanish inside [−ban, ban], we turn to
functions that vanish outside that interval.

We begin with:

Lemma 3.2. Let 1 < p <., D ¥ R, a > 0 and â :=min{1, a}. Let b ¥
(0, 1/2), e > 0 and assume that {kn}

.

n=1 is a sequence of measurable
functions from R to R satisfying

kn(x)=0, |x| > ban

and

|knwm| (x) [ e(1+|x|)−a, x ¥ R, n \ 1. (3.3)

Let m \ 1.
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(a) Suppose for the given m, 1 < p [ 4/m. Then assume that (1.6)
holds.

(b) Suppose that for the given m, p > 4/m. Then assume that (1.12)
holds.

Then for r=O, 1, ..., m−1,

lim sup
n Q.

||Hnmr[kn](x) wm(x)(1+|x|)−D||Lp(|x| \ 2ban) M e.

Proof. Indeed from (2.5), (3.3) and (4.7), we have for |x| \ 2ban

|wm(x) Hnmr[kn](x)(1+|x|)−D|

M a−D
n wm(x) : C

n

k=1
erkl

m
kn(x) kn(xkn)(x−xkn) r :

M ea−D
n
1 n
an

2 r C
|xkn| [ ban

|lkn(x) w−1(xkn) w(x)|m

×|x−xkn | r (1+|xkn |)−a

M ea−D
n
1 n
an

2 r

× C
|xkn| [ ban

1a3/2
n

n
max{n−2/3, 1− |xkn |/an}−1/4 |pn(x) w(x)|

|x−xkn |
2m

×|x−xkn | r (1+|xkn |)−a

M ea−D
n
1an

n
2m−r

(a1/2
n pn(x) w(x))m

× C
|xkn| [ ban

|x−xkn |−(m−r) (1+|xkn |)−a

M ea−D
n
1an

n
2m−r−1

|x|−(m−r) (a1/2
n pn(x) w(x))m

× C
|xkn| [ ban

(1+|xkn |)−a (xk−1, n −xk+1, n)

M ea−D
n
1an

n
2m−r−1

|x|−(m−r) (a1/2
n pn(x) w(x))m

×F
2ban

−2ban

(1+|t|)−a dt

M ea−D
n (a1/2

n pn(x) w(x))m a−(m−r)
n a1− â

n log n

M ea−(â+D)
n (a1/2

n pn(x) w(x))m log n. (3.4)
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If follows that using (3.4) and (4.6) we have

||Hnmr[kn](x) wm(x)(1+|x|)−D||Lp(|x| \ 2ban)

M ea−(â+D)+1/p
n nmax{m/6−2/(3p), 0}(log n)g

m, p.

Now observe that if mp > 4,

max{m/6−2/(3p), 0}=m/6−2/(3p).

Thus by (1.12), the polynomial growth of an and (1.6) we have,

lim sup
n Q.

||Hnmr[kn](x) wm(x)(1+|x|)−D||L(|x| \ 2ban) M e

and this proves the lemma. L

Next we present

Lemma 3.3. Let 1 < p <. and assume (1.6). Let e > 0, b ¥ (0, 1/4) and
assume that {kn}

.

n=1 is a sequence of measurable functions from R to R
satisfying

kn(x)=0, |x| > ban

and

|knwm| (x) [ e(1+|x|)−a, x ¥ R, n \ 1. (3.5)

Then for r=0, 1, ..., m−1,

lim sup
n Q.

||Hnmr[kn](x) wm(x)(1+|x|)−D||Lp(|x| [ 2ban) M e.

Proof. We find it convenient to consider the estimation of the sequence
of operators Hn, m, m−1 first and then the sequence Hn, m, r for r [ m−2. Thus
let |x| [ 2ban and observe that using (4.3) we have

|a1/2
n pn(x) w(x)| M 1.

Thus for this range of |x|

|wm(x) Hn, m, m−1[kn](x)|

=: C
n

k=1
em−1, kl

m
kn(x) wm(x)(x−xkn)m−1 kn(xkn):

=: C
n

k=1
em−1, klkn(x) w(x)(lkn(x) w(x)(x−xkn))m−1 kn(xkn):
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=|pn(x) w(x)|m−1 : C
n

k=1
em−1, klkn(x) w(x)(p −n(xkn)) (m−1) kn(xkn):

M : C
n

k=1
em−1, klkn(x) w(x)(a1/2

n p −n(xkn))−(m−1) kn(xkn): .

For each n \ 1, we define two sequences of functions an and k̃n as follows:
Set for x ¥ R

an(x) :=˛em−1, k(a
1/2
n p −n(xkn))−(m−1), x=xk, nk=1, 2, ..., n

0, otherwise

and

k̃n(x) :=kn(x) an(x), x ¥ R and n \ 1.

Then clearly

k̃n(x)=0, |x| > ban. (3.6)

Moreover, applying (2.5), (4.9) and (3.5) yields for |xkn | [ ban

|k̃n(xkn) w(xkn)| M |kn(xkn)| wm(xkn) M e(1+|xkn |)−a. (3.7)

Thus we have shown that for |x| [ 2ban

|wm(x) Hn, m, m−1[kn](x)(1+|x|)−D| M : C
n

k=1
lkn(x) w(x) k̃n(xkn)(1+|x|)−D :

=|Ln[k̃n](x) w(x)(1+|x|)−D|,

where k̃n satisfy (3.6) and (3.7). Then applying ([11], Lemma 3.4) gives

lim sup
n Q.

||Hn, m, m−1[kn](x) wm(x)(1+|x|)−D||L(|x| [ 2ban)

M lim sup
n Q.

||Ln[k̃n](x) w(x)(1+|x|)−D||Lp(|x| [ 2ban) M e. (3.8)

Next we turn to the estimation of the sequence of operators Hn, m, r for
r [ m−2. Set

k̂n(x) :=|kn(x)| wm−2(x), x ¥ R, n \ 1.

Then it is easy to see that

k̂n(x)=0, |x| > ban (3.9)
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and

|k̂n(x) w2(x)|=|kn(x) wm(x)| [ e(1+|x|)−a, x ¥ R. (3.10)

Moreover for r [ m−2 and |x| [ 2ban, we apply (2.5) and obtain

|wm(x) Hnmr[kn](x)|

=: C
n

k=1
erkl

m
kn(x) wm(x)(x−xkn) r kn(xkn):

M 1 n
an

2 r C
n

k=1
|lkn(x) w(x)(x−xkn)| r |lkn(x) w(x)|m−r−2 l2

kn(x) w2(x)|

× |kn(xkn)|.

Since

|lkn(x) w(x)(x−xkn)| r=:
pn(x) w(x)

p −n(xkn)
: r

and

|lkn(x) w(x)|m−r−2 M wm−r−2(xkn),

we have

|wm(x) Hnmr[kn](x)|

M 1 n
an

2 r C
n

k=1

: pn(x) w(x)
p −n(xkn) w(xkn)

: r l2
kn(x) w2(x) wm−2(xkn) |kn(xkn)|

M 1 n
an

2 r C
n

k=1

1an

n
2 r |a1/2

n pn(x) w(x)| r l2
kn(x) w2(x) wm−2(xkn) |kn(xkn)|

M C
n

k=1
l2
kn(x) w2(x) wm−2(xkn) |kn(xkn)|

= C
n

k=1
l2
kn(x) w2(x) k̂n(xkn).

Thus we have shown that

||Hnmr[kn](x) wm(x)(1+|x|)−D||Lp(|x| [ 2ban)

M > C
n

k=1
l2
kn(x) w2(x) k̂n(xkn)(1+|x|)−D>

Lp(|x| [ 2ban)
,
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where the sequence of functions k̂n satisfy (3.9) and (3.10). Thus we may
apply ([4], Lemma 3.3) and obtain for r=0, 1, ..., m−2,

lim sup
n Q.

||Hnmr[kn](x) wm(x)(1+|x|)−D||Lp(|x| [ 2ban) M e. (3.11)

Combining (3.8) and (3.11) proves Lemma 3.3. L

For x ¥ R, let

H̃nmr[f](x) :=1 n
an

2 r C
n

k=1
lm
kn(x)(x−xkn) r f(xkn).

If we inspect the proofs of Lemma 3.1, Lemma 3.2, and Lemma 3.3, we see
that they hold for this operator as well under all the hypotheses of these
former lemmas and under the weaker condition that the real variable x in
(3.1), (3.3) and (3.5) may be replaced by the subsequence {xkn}, k=1, ..., n.
That is, for f,

|f(xkn) wm(xkn)| [ e(1+|xkn |)−a, k=1, ..., n, a < 0.

With this observation, we prove our final lemma in this section, namely:

Lemma 3.4. Let 1 < p <., D ¥ R, a > 0 and â :=min{1, a}. Let m \ 1
and e > 0.

(a) Suppose for the given m, 1 < p [ 4/m. Then assume that (1.5) and
(1.6) hold.

(b) Suppose that for the given m, p > 4/m. Then assume that (1.11)
and (1.12) hold. Moreover, if m > 6, assume that (1.13) always holds.

Then for any fixed polynomial R,

lim sup
|x| Q.

||(Hnm[R](x)−R(x)) wm(x)(1+|x|)−D||Lp(R) M e.

Proof. For any fixed polynomial R, by (4.4)

|R (t)(x) wm(x)(1+|x|)a| [ M x ¥ R, t=0, 1, ..., m−1.

where M is a constant independent of x and t. Then for n \ deg R(x),

R(x)−Hnm[R](x)= C
m−1

t=1
C
n

k=1
R (t)(xkn) htk(x).
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Here, for 1 [ t [ m−1

htk(x)=lm
kn(x)

(x−xkn) t

t!
C

m−1−t

i=0
etik(x−xkn) i

=
1
t!

C
m−1−t

i=0
etikl

m
kn(x)(x−xkn) t+i

=
1
t!

C
m−1−t

i=0

etik

1 n
an

2 t+i
1 n
an

2 t+i

lm
kn(x)(x−xkn) t+i.

If we set

R[t, i]
n (x) :=R(t)(x) r[t, i]

n (x),

where r[t, i]
n (x) is a function satisfying

r[t, i]
n (xkn)=

etik

1 n
an

2 t+i
k=1, 2, ..., n,

then for sufficiently large n,

|R[t, i]
n (xkn) wm(xkn)(1+|xkn |)a|

= : etik

1 n
an

2 t+i : |R (t)(xkn) wm(xkn)(1+|xkn |)a|

M : etik

1 n
an

2 t+i : M 1 nan

2−t

[ e.

Then

R(x)−Hnm[R](x)

= C
m−1

t=1
C
n

k=1
R (t)(xkn)

1
t!

C
m−1−t

i=0

etik

1 n
an

2 t+i
1 n
an

2 t+i

lm
kn(x)(x−xkn) t+i

= C
m−1

t=1
C

m−1−t

i=0

1
t!

C
n

k=1
R[t, i]

n (xkn) 1
n
an

2 t+i

lm
kn(x)(x−xkn) t+i

= C
m−1

t=1
C

m−1−t

i=0

1
t!

H̃n, m, t+i[R
[t, i]
n ](x)
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and

||(Hnm[R](x)−R(x)) wm(x)(1+|x|)−D||Lp(R)

[ C
m−1

t=1
C

m−1−t

i=0

1
t!

||H̃n, m, t+i[R
[t, i]
n ](x) wm(x)(1+|x|)−D||Lp(R).

Let qn be the characteristic function of [−an/4, an/4] and

R[t, i]
n =qnR

[t, i]
n +(1−qn) R[t, i]

n :=fn+kn.

Then using the observation just before the statement of the lemma,

lim sup
n Q.

||(Hnm[R](x)−R(x)) wm(x)(1+|x|)−D||Lp(R) M e. L

We are now ready to present the:

Proof of Theorems 1.1a and 1.1b. We assume firstly that 1 < p <..
Since the conditions of Theorem 1.1a and Theorem 1.1b ensure the
assumptions of Lemma 3.1, Lemma 3.2 and Lemma 3.3, we will use the
results of these lemmas in our proof. Given any e > 0, we may find a poly-
nomial P satisfying

|f−P|(x) wm(x)(1+|x|)a [ e, x ¥ R.

Then for n \ C, we may write

||(f−Hnm[f])(x) wm(x)(1+|x|)−D||Lp(R)

[ ||(f−P)(x) wm(x)(1+|x|)−D||Lp(R)

+||(P−Hnm[P])(x) wm(x)(1+|x|)−D||Lp(R)

+||Hnm[P−f](x) wm(x)(1+|x|)−D||Lp(R).

Here, (a+D) p \ (â+D) p > 1 so that first

||(f−P)(x) wm(x)(1+|x|)−D||Lp(R) [ e ||(1+|x|)−(a+D)||Lp(R) M e.

Moreover by Lemma 3.4, we have

lim
n Q.

||(P−Hnm[P])(x) wm(x)(1+|x|)−D||Lp(R)=0.

Let qn be the characteristic function of [−an/4, an/4] and let us write

P−f=(P−f) qn+(P−f)(1−qn) :=kn+fn.
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Then applying Lemmas 3.1–3.3 with b=1/4 yields

lim sup
n Q.

||Hnm[P−f](x) wm(x)(1+|x|)−D||Lp(R)

[ C
m−1

r=0
lim sup

n Q.
||Hnmr[P−f](x) wm(x)(1+|x|)−D||Lp(R) M e.

Thus

lim sup
n Q.

||(f−Hnm[f])(x) wm(x)(1+|x|)−D||Lp(R) M e

and so letting eQ 0+ yields (1.7). To see (1.9), we apply the representation
(1.4), the method of proof of Lemma 3.4 and (1.7). This completes the
proof of Theorems 1.1a and 1.1b for the case 1 < p <..

Now, we assume that 0 < p [ 1.
The idea of the proof is simple. We first apply an idea of ([14],

Theorem 1.1) whereby we reduce the problem to an application of
Theorems 1.1a and 1.1b for p > 1. This is accomplished as follows. Let
q > 1 and qŒ be its conjugate satisfying the relation

1
q
+

1
qŒ

=1.

Using Hölder’s inequality, we observe that for any such q and any real D1

we have the inequality

||(f−Hnm[f](x)) wm(x)(1+|x|)−D||pLp(R)

=F
R

|(f−Hnm[f](x)) wm(x)(1+|x|)−D1 (1+|x|)−(D−D1)|p dx

[ 1F
R

|(f−Hnm[f](x)) wm(x)(1+|x|)−D1|pq dx2
1/q

(3.12)

×1F
R

(1+|x|)−(D−D1) pqŒ dx2
1/qŒ

. (3.13)

Next we analyze the sufficient conditions (1.5)–(1.6), (1.11)–(1.12) and
(1.14)–(1.15) carefully and prove the existence of a q with pq > 1 and D1 so
that Theorems 1.1a and 1.1b may be applied to (3.12). We will also show
that with this careful choice of q and D1, the term in (3.13) is also uniformly
bounded. This will establish Theorems 1.1a and 1.1b for 0 < p < 1 as
required.

HERMITE AND HERMITE–FEJÉR INTERPOLATION 53



First, we consider the case 1 [ m < 4. Note that in this case we have
0 < p < 4/m and so we may choose q with 1 < pq < 4/m. By (1.5) and
(1.6), there exists some constant A > 0 such that for the given n \ C

a−(a+D)+1/p
n nm/6−1/3(log n)g

m, p < A (3.14)

and

a−(â+D)+1/p
n < 1. (3.15)

From (3.14) and (3.15) we obtain respectively the relations

a−a+1/pq
n nm/6−1/3(log n)g

m, p/A < aD−1/p+1/pq
n

and

a−â+1/pq
n < aD−1/p+1/pq

n .

Thus from the above, we may choose D1 satisfying

a−a+1/pq
n nm/6−1/3(log n)g

m, p/A < aD1n < aD−1/p+1/pq
n (3.16)

and

a−â+1/pq
n < aD1

n < aD−1/p+1/pq
n . (3.17)

We summarize our findings as follows:
From the left most inequality in (3.16) we obtain the relation

a−(a+D1)+1/pq
n nm/6−1/3(log n)g

m, p < A, (3.18)

from the left most inequality in (3.17) we obtain the relation

−(â+D1)+1/pq < 0 (3.19)

and finally from the right most inequality in (3.17) we obtain the relation

−(D−D1)+1/p−1/pq < 0. (3.20)

Thus (3.18) and (3.19) are just (1.5) and (1.6) respectively with p replaced
by pq and D replaced by D1. Thus Theorems 1.1a and 1.1b for the case
p > 1 together with (3.20) ensure that Theorems 1.1a and 1.1b hold indeed
for 0 < p < 1 in this case.

Now, we consider the case m \ 4. Clearly if 0 < p [ 4/m, we may apply
exactly the same argument as above, so without loss of generality we
assume that 4/m < p < 1. We choose q with

1 < pq < max{1−3d1/4, 1−3d2/4, 0}−1,
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where d1 and d2 are as in (1.14) and (1.15). Then since

(log n)−1/p [ (log n)−1/pq,

we have

a−a
n nm/6−1 M (log n)−1/pq

and since (1.14) and (1.15) hold we also have the relations

a−(a+D)+1/p
n n (m−1)/3−2/(3pq) log n < n2/3−2/(3pq)−d1/2 < 1

and

a−(â+D)+1/p
n nm/6−2/(3pq) log n < n2/3−2/(3pq)−d2/2 < 1.

From the above two relations we deduce that

a−a+1/pq
n n (m−1)/3−2/(3pq) log n < aD−1/p+1/pq

n

and

a−â+1/pq
n nm/6−2/(3pq) log n < aD−1/p+1/pq

n .

Let us now choose D1 satisfying

a−a+1/pq
n n (m−1)/3−2/(3pq) log n < aD1n < aD−1/p+1/pq

n

and

a−â+1/pq
n nm/6−2/(3pq) log n < aD1n < aD−1/p+1/pq

n .

It follows that we have (1.11) and (1.12) with p replaced by pq and D
replaced by D1. Moreover (3.20) gain holds. Thus we conclude that

lim
n Q.

F
R

|(f−Hnm[f](x)) wm(x)(1+|x|)−D1|pq dx=0

and

F
R

(1+|x|)−(D−D1) pqŒ dx <..

Therefore,

lim
n Q.

||(f−Hnm[f](x)) wm(x)(1+|x|)−D||pLp(R)=0.
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By the same method as above, we also have

lim
n Q.

||(f−Ĥnm[f](x)) wm(x)(1+|x|)−D||pLp(R)=0.

This completes the proof of Theorems 1.1a and 1.1b. L

APPENDIX

In this last section we present a technical lemma concerning some esti-
mates for the orthogonal polynomials for our class of weights. This lemma
was use in Sections 2 and 3 and its statement in its present form can be
found in [11, Theorems 2.1–2.2]. We emphasize that it is only included as
a reference for easier reading.

Lemma 4.1.

(a) For n \ 2,

|1−x1n/an | M n−2/3 (4.1)

and uniformly for 1 [ k [ n−1,

xk, n −xk+1, n ’
an

n
max{1− |xk, n |/an, n−2/3}−1/2. (4.2)

(b) For n \ 1,

sup
x ¥ R

|pn(x)| w(x) |1− |x|/an |1/4 ’ a−1/2
n . (4.3)

and

sup
x ¥ R

|pn(x)| w(x) ’ n1/6a−1/2
n .

(c) Let 0 < p [.. For n \ 1 and P ¥Pn,

||Pw||Lp(R) M ||Pw||Lp[−an, an]. (4.4)

(d) Uniformly for n [ 2 and 1 [ k [ n−1,

(1− |xk, n |/an) ’ (1− |xk+1, n |/an). (4.5)
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(e) Let 0 < p <.. Uniformly for n \ 1,

||pnw||Lp(R) ’ a1/p−1/2
n ×˛

1, p < 4,

(log n)1/4, p=4,

n (1/6)(1−4/p), p > 4.

(4.6)

(f) Uniformly for n \ 1, 1 [ k [ n, and x ¥ R,

|lkn(x)| ’
a3/2

n

n
w(xk, n) max{n−2/3, 1− |xk, n |/an}−1/4 : pn(x)

x−xk, n

: (4.7)

and

|lk, n(x)| w−1(xk, n) w(x) M 1. (4.8)

(g) Uniformly for n \ 1 and 1 [ k [ n,

p −n(xk, n) w(xk, n) ’
n

a3/2
n

(max{n−2/3, 1− |xk, n |/an})1/4. (4.9)
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